Blood

The Circulatory System

- Circulatory System
 - Blood
 - Heart
 - Blood Vessels
- Cardiovascular system
 - Blood vessels
 - Heart
- Hematology: the study of blood, blood-forming tissues, and the disorders associated with them

Functions of Blood

- Transportation
 - Dissolved gases, nutrients, hormones, metabolic wastes, and stem cells
- Protection
 - Plays a role in inflammation
 - Cancer
 - Toxins and pathogens
 - Restriction of fluid losses at injury sites
- Regulation
 - Stabilizes fluid distribution in the body
 - pH and ion composition of interstitial elements
 - Stabilization of body temperature
General Properties of Blood

- Temperature 38°C (100.4°F)
- More viscous than water
 - 5 times more “sticky”
- pH 7.35-7.45
 - Average 7.4

Whole blood volume
- About 7-8% of total body weight in average-sized adults
 - Females 4-5 liters
 - Males 5-6 liters
- **Unit:** the amount collected from a blood donor for transfusion purposes
 - About 0.5 liter
 - Constitutes about 10% of total blood volume in many adults

Blood

PLASMA
Fluid portion of blood
Plasma
- 92% water
- Plasma proteins
 - Albumins
 - Maintain blood osmotic pressure
 - Transport proteins
 - Fatty acids, thyroid hormones, steroid hormones, etc
 - Globulins
 - Antibodies (immunoglobulins): bind to antigens
 - Transport globulins: bind small ions, hormones, etc
 - Fibrinogen --- for clotting
 - Others: plasminogen, prothrombin, insulin, prolactin, TSH, FSH, LH
- Origins of plasma proteins
 - 90% synthesized in liver
 - Antibodies synthesized in blood
 - Peptide hormones made in endocrine organs
- **Serum**: plasma with blood clots and solids removed

Formed Elements
- Red blood cells (erythrocytes)
- White blood cells (leukocytes)
 - Granular leukocytes
 - Neutrophils
 - Eosinophils
 - Basophils
 - agranular leukocytes
 - Lymphocytes: T cells, B cells, natural killer cells
 - Monocytes
- Platelets (thrombocytes)

Most numerous of the formed elements
- One drop has ~260 million cells
- Average adult has over 25 trillion cells
- Combined surface area larger than one football field
Hematocrit
- Percentage of blood occupied by cells
 - Female normal range
 - 38 - 46% (average of 42%)
 - Male normal range
 - 40 - 54% (average of 46%)
- Testosterone
- Anemia
 - Not enough RBCs or not enough hemoglobin
- Polycythemia
 - Too many RBCs (over 65%)
 - Dehydration, tissue hypoxia, blood doping

Red Blood Cells (Erythrocytes)

Mature RBC
- No nucleus
- Missing many organelles
- Biconcave shape
 - Surface area of volume?
 - Smooth laminar flow?
 - Most stable shape?
Function of RBC

- Transport – Hemoglobin (Hb)
 - 2 alpha chains and 2 beta chains bind
 - carbon dioxide
 - H+ ions
 - Heme
 - Iron ion binds oxygen

- Oxyhemoglobin – hemoglobin molecule bound to oxygen
- Deoxyhemoglobin – a hemoglobin molecule whose iron is not bound to oxygen
- Carbaminohemoglobin – alpha and beta chains bound to carbon dioxide

Recycling of Hemoglobin

- 90% Recycled by spleen
 - Heme
 - Iron – transported to bone marrow
 - Rest converted
 - Biliverdin (green)
 - Bilirubin (orange-yellow)
 - Transported to liver
 - Excreted in bile to small intestine
 - Urobilins (yellow)
 - Stercobilins (brown)
 - Amino acids
- 10% Hemolysis in blood
 - filtered and eliminated by kidneys
RBC Production

Erythropoiesis

- Red bone marrow (myeloid tissue)
 - Vertebrae, sternum, ribs, skull, pelvis, proximal limb bones
- Key stages
 - Hemopoietic stem cells (hemocytoblasts)
 - Myeloid stem cells
 - Erythropoietin (EPO)
 - Proerythroblasts --- start producing hemoglobin
 - Erythroblasts
 - Reticulocytes --- enter blood and eject nucleus
 - Erythrocytes

Regulation of Erythropoiesis

- Adequate nutrient levels
 - Vitamins B₁₂ and B₆, folic acid, iron, aa, copper, cobalt
- Erythropoietin (EPO)
 - Stimulates division of stem cells and erythroblasts
 - Speeds up RBC maturation
 - Released by hypoxia
 - Anemia
 - Decreased blood flow to kidneys
 - Decreased oxygen content of air at lungs
 - Damage to respiratory surfaces of lungs
- Testosterone
- Multi-CSF (Colony Stimulating Factor)
 - Hormone produced in the cells lining the blood vessels
White Blood Cells (Leukocytes)

- Combat infection and inflammation
- Principle types
 - Granular
 - Neutrophils
 - Eosinophils
 - Basophils
 - Agranular
 - Lymphocytes
 - Monocytes

![Neutrophil](image)

![Eosinophil](image)

![Basophil](image)
WBC Circulation & Movement
- All can migrate out of bloodstream
 - Only ~2% of population in circulating blood at any given time
 - Most are in lymphatic tissue, skin, lungs, lymph nodes, spleen
 - Use bloodstream as a "freeway system"
- All are capable of amoeboid movement
- All exhibit positive chemotaxis
 - Attracted to specific chemicals
- Some are capable of phagocytosis
 - Neutrophils, eosinophils, and monocytes
 - Macrophages: phagocytic monocytes in peripheral tissues
 - Microphages: phagocytic neutrophils and eosinophils in peripheral tissues

White Blood Cells
- White blood cells (leukocytes)
 - Granular leukocytes
 - Neutrophils
 - Eosinophils
 - Basophils
 - Agranular leukocytes
 - Lymphocytes: T cells, B cells, natural killer cells
 - Monocytes
Neutrophil Function

- Fastest response of all WBC to bacteria
- Direct actions against bacteria
 - Phagocytosis
 - Release lysozymes which destroy/digest bacteria
 - Release **defensin** proteins that poke holes in bacterial cell walls destroying them
 - Release strong oxidants (bleach-like, strong chemicals) that destroy bacteria
- Contribute to inflammation and pus

Eosinophil Function

- Phagocytize antibody-antigen complexes
- Anti-inflammatory responses
 - Release histaminase
 - Slows down inflammation caused by neutrophils and basophils
- Attack parasitic worms (hookworms, tapeworms, etc)
 - Exocytosis of toxic compounds

Most numerous in lining of respiratory tract and digestive tract. Why??

Basophil Function

- Involved in inflammatory and allergy reactions
- Leave capillaries & enter connective tissue as mast cells
- Release
 - **Heparin**: prevents blood clotting
 - **Histamine**: dilates blood vessels
- Heighten the inflammatory response and account for hypersensitivity (allergic) reaction

Lymphocyte Functions

- **B cells**
 - Destroy bacteria and their toxins
 - Turn into plasma cells that produces **antibodies**
- **T cells**
 - Attack viruses, fungi, transplanted organs, cancer cells & some bacteria
- **Natural killer cells**
 - Attack many different microbes & some tumor cells
 - Destroy foreign invaders by direct attack
Monocyte Function
- Take longer to get to site of infection, but arrive in larger numbers
- Destroy microbes and clean up dead tissue following an infection
- **Macrophages**

Differential Counts

A complete blood count (CBC) is used to determine blood cell counts, hemoglobin, hematocrit, white blood cell count, differential white blood cell count, and platelet count.

<table>
<thead>
<tr>
<th>Class</th>
<th>Normal Range (%)</th>
<th>Typical Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>65-75</td>
<td>65</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>2-5</td>
<td>3</td>
</tr>
<tr>
<td>Basophils</td>
<td>0.5-1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>20-25</td>
<td>25</td>
</tr>
<tr>
<td>Monocytes</td>
<td>3-8</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

What would you expect to see with a bacterial infection?

The following patients show increased WBC counts:

1. Amy has a sore throat, runny nose, and a cough.
 - What is wrong with her?
 - What treatment do you suggest?

2. Joe is achy all over, fatigued, and has a fever and cough.
 - What is wrong with him?
 - What treatment do you suggest?

3. Chris has fatigue, diarrhea, nausea and vomiting
 - What is wrong with him?
 - What treatment do you suggest?

Differential Counts

- **Leukocytosis**: high white blood cell count
 - Microbes, strenuous exercise, anesthesia or surgery
- **Leukemia**: uncontrolled production of white blood cells
 - Myeloid leukemia – granulocytes
 - Lymphoid leukemia – lymphocytes or monocytes
- **Leukopenia**: low white blood cell count
 - Radiation, shock, chemotherapy, measles, mumps, chickenpox, polio, influenza, typhoid fever, AIDS, immunosuppressant drugs, or lead, arsenic, and mercury poisoning
Red bone marrow
- Hemocytoblasts
- Myeloid cells
- Progenitor cells
- All formed elements
 - Basophil
 - Eosinophil
 - Neutrophil
 - Monocyte
- EXCEPT lymphoblasts

Regulation of WBC Production
- Colony-stimulating factors (CSFs): stimulates production of formed elements
 - M-CSF: monocytes
 - G-CSF: granulocytes
 - GM-CSF: granulocytes and monocytes
 - Multi-CSF: granulocytes, platelets, RBCs

Platelet Function
- Release chemicals for clotting process
- Formation of temporary patch in walls of damaged blood vessels
- Active contraction after clot formation has occurred
Platelet Production

- **Thrombocytopoiesis**: platelet formation
- **Thrombopoietin (TPO)**
 - Thrombocyte-stimulating factor
 - Produced in kidneys and liver
 - Stimulates platelet formation
 - Stimulates production of megakaryocytes
- **Interleukin-6 (IL-6)**: stimulates platelet formation
- **Multi-CSF**: stimulates formation and growth of megakaryocytes

Hemostasis

- **Hemostasis**: stoppage of bleeding
 - Series of chemical reactions that takes place in a definite and rapid sequence resulting in a net of fibers that traps red blood cells
- Prevents
 - hemorrhage: loss of a large amount of blood
- Response must be
 - Quick
 - Localized
 - Controlled
- Phases
 - Vascular phase
 - Platelet phase
 - Coagulation phase
Blood

Vascular Phase

- Occurs in seconds, lasts ~30 minutes
- Damage to blood vessel produces stimulates pain receptors
- **Vascular spasm**: local contraction of the smooth muscle fibers in blood vessel wall
- Changes in endothelium of vessel
 - Endothelial cells contract and expose underlying basal lamina to bloodstream
 - Endothelial cells release chemical factors and local hormones
 - Endothelial cell membranes become “sticky”

Platelet Phase

- Begins ~15 sec after injury
- Attachment of platelets to sticky endothelial surfaces, basal lamina, and exposed collagen fibers
 - **Platelet adhesion**: attachment of platelets to exposed surfaces
 - **Platelet activation/aggregation**: platelets begin sticking to each other
 - **Platelet plug**: an aggregation of platelets that may close the break in the vessel wall

Platelet Adhesion

- **Platelet activation**
 - Form cytoplasmic processes (pseudopods)
 - Release chemicals
 - ADP: stimulates platelet aggregation and secretion
 - Thromboxane A2: vasoconstrictor (vascular spasm)
 - Serotonin: vasoconstrictor (vascular spasm)
 - Clotting factors
 - Platelet derived growth factor (PDGF): promotes vessel repair
 - Calcium ions: required for platelet aggregation and clotting
Platelet Phase

- Control of platelet aggregation
 - **Prostacyclin**
 - Released by endothelial cells
 - Inhibits platelet aggregation
 - Inhibitory compounds
 - Released by WBCs
 - Circulatory plasma enzymes break down ADP near plug
 - Blood clot isolates activated platelets from general circulation

Coagulation Phase

- Occurs at least 30 sec after injury
- **Coagulation**: blood clotting
 - Convert fibrinogen to fibrin
 - **Fibrinogen**: soluble plasma protein
 - **Fibrin**: insoluble fibrous protein
 - Two pathways to initiate
- **Blood clot**: fibrous tangle of fibrin and formed elements
Overview of the Clotting Cascade

Clotting factors (procoagulants)
- Calcium
- Prothrombin
- Prothrombinase
- Thrombin
- Fibrinogen
- Fibrin

Extrinsic Pathway
- Damaged tissues leak tissue factor (thromboplastin) into bloodstream
- Prothrombinase forms in seconds
 • ~15 sec for clot to occur
- Must have
 • Calcium
 • Clotting factors

Intrinsic Pathway
- Damaged blood vessels
- Activation occurs
 • Endothelium is damaged & platelets come in contact with collagen of blood vessel wall
 • Platelets damaged & release phospholipids
- Requires longer for reaction to occur
 • ~3 – 6 min for clot to occur
- Substances involved:
 • Calcium
 • Clotting factors

Clot Retraction & Blood Vessel Repair
- Begins 30-60 minutes after injury
- Platelets pull on fibrin threads causing clot retraction
 • Actin/Myosin
- Edges of damaged vessel are pulled together
- Fibroblasts & endothelial cells repair the blood vessel

Atherosclerosis, test tube
Fibrinolysis

- **Fibrinolysis**: dissolve the clot
- Inactive **plasminogen** is incorporated into the clot
 - Thrombin and clotting factors activate plasmin
 - **Plasmin** digests fibrin threads
- **Synthetic factors**
 - Streptokinase
 - Tissue plasminogen activator (t-pa)

Control

- **Control of extrinsic pathway**
 - Peripheral tissues not exposed to inside of blood vessels
- **Control of intrinsic pathway**
 - **Platelet repulsion**: platelets do not adhere to smooth healthy endothelium
 - Blood has **anticoagulants**
 - **Heparin** (from basophils and mast cells)
 - Interferes with formation of prothrombin activator
 - Blocks action of thrombin
 - Promotes anti-thrombin
 - **Anti-thrombin** from liver
- **Dilution**: blood disperses clotting factors

How would the following affect normal flow of blood and why?

1. Atherosclerosis
 - Plaque builds up inside the arteries
 - Plaque is made of cholesterol, fatty substances, cellular waste products, calcium and/or fibrin
2. Prolonged compression
3. Prolonged immobility

Role of Vitamin K in Clotting

- Normal clotting requires adequate vitamin K
 - Fat soluble vitamin absorbed if lipids are present
 - Absorption slowed if bile release is insufficient
- Required for synthesis of 4 clotting factors by hepatocytes
 - Factors II (prothrombin), VII, IX and X
- Produced by bacteria in large intestine
Abnormal Clotting

- **Hemophilia**: deficiency of coagulation
- **Thrombosis**: clotting in an unbroken blood vessel
- **Embolus**: a clot, air bubble, fat, or piece of debris transported by the bloodstream

Anticoagulants

Suppress or Prevent Blood Clotting

- **heparin**
 - administered during hemodialysis and surgery
- **warfarin (Coumadin)**
 - antagonist to vitamin K so blocks synthesis of clotting factors
 - slower than heparin
- stored blood in blood banks treated with citrate phosphate dextrose (CPD) that removes Ca^{2+}

Hematologic Tests

- Total white blood cell count
- Differential white blood cell count
- Total red blood cell count
- Hemoglobin concentration
- Bleeding time
- Hematocrit
- Microscopic examination
- Sickle cell anemia
- Blood typing
Blood Typing

- **Antigens**: substance able to produce an immune response
 - Ex: protein molecules on surface of RBCs
- **Antibodies**: protein molecules that bind to specific antigens
 - Inhibit or destroy it
- **Agglutination**: clumping of red blood cells due to antibodies binding antigens
 - also causes **hemolysis** due to activation of additional plasma proteins
Antibodies cause agglutination
Agglutination causes hemolysis

Transfusion Reaction

ABO / Rh Blood Systems

- Possible antigens (proteins)
 1. A
 2. B
 3. Rh

- Genetically inherited from mother and father
 - Potential to make 2 copies/proteins in ABO
 - Ex: AA, BB, AB, A/none, B/none, none/none
 - Potential to make Rh or not
 - Rh/Rh, Rh/none = positive
 - None/none = negative

<table>
<thead>
<tr>
<th>Antigen, Blood Type...</th>
<th>Group A</th>
<th>Group B</th>
<th>Group AB</th>
<th>Group O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red blood cell type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibodies in Plasma</td>
<td>Anti-B</td>
<td>Anti-A</td>
<td>None</td>
<td>Anti-B and Anti-A</td>
</tr>
<tr>
<td>Antigens in Red Blood Cell</td>
<td>A antigen</td>
<td>B antigen</td>
<td>A and B antigens</td>
<td>None</td>
</tr>
</tbody>
</table>
Blood

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Proteins/Antigens</th>
<th>Antibodies</th>
<th>Receive</th>
<th>Donate</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hemolytic Disease of the Newborn

Clinical Information

- **Antisera (antiserum):** man-made solution containing antibodies
- **Serum:** blood plasma with blood clotting proteins removed (unable to clot)
 - Still able to agglutinate
Blood