~22 square feet
Weighs ~9 - 11 pounds
Accounts for about ~16\% of total body weight
LECTURE OUTLINE

- Overview
- Basic Structure
- Types of Skin
- Skin Color
- Accessory Organs
- Wound Healing
- Homeostasis
INTEGUMENTARY SYSTEM OVERVIEW

- **Skin**: cutaneous membrane
 - Cutaneous membrane: epithelial tissue and connective tissue
 - Epidermis
 - Dermis

- **Accessory organs**
 - Hair
 - Nails
 - Multicellular exocrine glands

- **Subcutaneous layer**
 - Hypodermis, superficial fascia
 - Loose connective tissue (primarily adipose tissue)
 - NOT part of integumentary system
INTEGUMENTARY SYSTEM OVERVIEW

- Functions
 - Resistance to trauma and infection
 - Barrier
 - Excretion: ~400 mL of water evaporates from it daily
 - Thermoregulation
 - Vitamin D3 (Cholecalciferol)
 - Precursor to calcitriol: essential for absorption of calcium and phosphorus by the small intestine
 - Storage
 - Lipids
 - Blood: ~5% body’s entire volume
 - Nonverbal communication
 - Sensation
Rickets
Vitamin D deficiency
BASIC STRUCTURE

- Epidermis
- Dermis
- Hypodermis
EPIDERMIS

- Keratinized Stratified Squamous Epithelium
- Cells
 + Stem cells (basal cells)
 + Keratinocytes
 + Melanocytes
 + Langerhans cells (dendritic cells)
 + Merkel cells
- Layers
 + Stratum basale
 + Stratum spinosum
 + Stratum granulosum
 + Stratum lucidum
 + Stratum corneum
EPIDERMIS

Basal Cells (Germinative cells)

- Stem cells
 - “baby keratinocytes”
 - Divide and replace keratinocytes
- Dominate stratum basale
- Rounded and stain dark
Keratinocytes

- Produce keratin and kera-tohylin - fibrous proteins that help give epidermis its protective properties
 - Intermediate filaments
- Tightly connected to one another by desmosomes
- Arise from stratum basale
EPIDERMIS

Melanocytes

- Spider shaped epithelial cells
- produces melanin pigment
 + Melanosomes - membrane bound granules of accumulated melanin
- melanin transferred to other cells with long cell processes
Langerhans’ Cells

- Arise from bone marrow
 + Macrophages
- provide immunity
Merkel cells

- form touch receptor with sensory neuron
 - Merkel disc
- Present at epidermal-dermal junction
EPIDERMIS

Stratum Basale

- Basal layer
- Firmly attached to underlying dermis
 + wavy borderline like corrugated cardboard
- Stem cells
- Some melanocytes
- UV triggers production of vitamin D$_3$
Stratum Spinosum

- Spiny layer
- 8-10 layers thick
- Flattening Keratinocytes
- Langerhans’ cells
- UV triggers production of vitamin D$_3$
Stratum Granulosum

- Granular layer
- 3-5 layers
- Keratinocytes
 - continue to flatten,
 - nuclei and organelles begin to disintegrate
- Keratin and keratohyaline
Stratum Lucidum

- Thick skin
- 3-5 layers
- Clear, flat, dead cells
- Full of keratin and eleidin
 - Eleidin: clear protein
Stratum Corneum

- 20 to 30 layers
- flat dead cells
 - filled with keratin and surrounded by lipids
- Continuously shed
- Barrier to light, heat, water, chemicals & bacteria

Average person sheds ~ 40 pounds of these flakes in a lifetime
EPIDERMOLYSIS BULBOSA

Keratinocyte

Intermediate filament (keratin)

Keratinocyte
EPIDERMIS

Life History of a Keratinocyte

- Stem cells divide to produce keratinocytes
- As keratinocytes are pushed up towards the surface
 - They produce keratin filaments
 - They produce lipid-filled lamellar granules
 - They die and nuclei and organelles degenerate
- 30-40 days unless outer layers removed in abrasion
 - Psoriasis = chronic skin disorder
 - cells shed in 7 to 10 days as flaky silvery scales
 - abnormal keratin produced
DERMIS

- **Accessory structures**
- **Layers**
 - Papillary layer
 - Areolar connective tissue
 - Dermal papillae
 - Epidermal ridges
 - Reticular layer
 - Dense irregular connective tissue
Dermis

Papillary Layer

- Areolar connective tissue
 - collagen
 - elastic fibers
- Dermal papillae
 - Contain capillary loops, nerve endings, touch receptors
 - Epidermal ridges
 - Friction ridges
DERMIS

Reticular Layer

- Dense irregular connective tissue
 - collagen and elastic fibers
 - Adipose tissue
- Flexure lines (flexion creases)
- Lines of cleavage
 - Separations or less dense regions of collagen
DERMIS

Dermal Blood Supply

- **Papillary plexus**: network of arteries in papillary layer of dermis
 - Follow contours of epidermis
- **Cutaneous plexus**: networks of arteries in subcutaneous layer
 - Supply reticular layer of dermis
Stretch Marks: tears in dermis

Blister: separation of epidermal and dermal layers by fluid filled pocket

Dermatitis: inflammation primarily involving papillary layer
HYPODERMIS

Aka Subcutaneous Layer or Superficial fascia

- No clear boundary between this layer and reticular dermis
- Adipose plus some areolar connective tissue
- Not part of skin - shares protective functions
- Anchors the skin to the underlying structures
- Acts as a shock absorber and an insulator that prevents heat loss due to fatty composition
- Blood reservoir
TYPES OF SKIN

- Thin skin
 - covers most of body
 - thin epidermis (0.1 to 0.15 mm) that lacks stratum lucidum
 - lacks epidermal ridges, has fewer sweat glands and sensory receptors

- Thick skin
 - only on palms and soles
 - thick epidermis (0.6 to 4.5 mm) with distinct stratum lucidum & thick stratum corneum
 - lacks hair follicles and sebaceous glands
SKIN COLOR

- The wide variety of colors in skin is due to three pigments
 - melanin
 - carotene
 - hemoglobin
- Diagnostic clues
 - Cyanosis, jaundice, erythema, pallor, hematoma
SKIN COLOR

Pigments

- Melanin produced in epidermis by melanocytes
 - same number of melanocytes in everyone, but differing amounts of pigment produced
 - results vary from yellow to tan to black color
 - melanocytes convert tyrosine to melanin
 - UV in sunlight increases melanin production

- Clinical observations
 - Freckles / liver spots = melanocytes in a patch
 - Mole = elevated patch of melanocytes
 - Albinism = inherited lack of tyrosinase; no pigment
SKIN COLOR

Pigments

- **Carotene**
 + yellow-orange pigment (precursor of vitamin A)
 + Normally found in stratum corneum & dermis
 + Can accumulate in dermis and subcutaneous layers

- **Hemoglobin**
 + red, oxygen-carrying pigment in blood cells
 + if other pigments are not present, epidermis is translucent so pinkness will be evident
SKIN COLOR

Diagnostic Clues

- Jaundice
 + yellowish color to skin and whites of eyes
 + buildup of yellow bilirubin in blood from liver disease

- Cyanotic
 + bluish color to nail beds and skin
 + hemoglobin depleted of oxygen looks purple-blue
SKIN COLOR

Diagnostic Clues

- Erythema
 + redness of skin due to capillary enlargement in dermis
 + inflammation, exercise, allergy or burns, emotion

- Pallor
 + Pale color due to decreased blood flow through skin
 + White color of collagen showing through
 + Fever, shock, cold

- Hematoma (bruising)
 + Blood clotting in skin
ACCESSORY ORGANS OF SKIN

- Epidermal derivatives
- Cells sink inward during development to form:
 - Hair
 - Oil glands
 - Sweat glands
 - Nails
Hair (pilus): non living structures that project above the surface of the skin

Hair follicles: organs shaped like tubes that produce hair

Function
- Protection from UV
- Cushion from light blows
- Insulation
- Prevents entry of foreign particles
- Sensory receptors
- Nonverbal communication and maturity
HAIR

Structure of the Hair and Follicle

- Keratinized epithelial cells
- Zones
 - Bulb (only region with living cells)
 - Root
 - Shaft
- Dermal papilla: bud of vascular connective tissue
- Arrector pili (piloerector muscle, pilomotor muscle)
- Hair root plexus (hair receptors)
HAIR

Hair Growth and Loss

- Hair cycle
 - Anagen - Growth stage (6-8 years)
 - matrix cells at base of hair root producing length
 - Catagen – Degeneration stage (2-3 weeks)
 - Mitosis stops & follicle atrophies
 - Club hair
 - Telogen – Resting stage (1-3 months)
- Club hair falls out as growth stage begins again
 - normal hair loss is 50 to 100 hairs per day
 - Increased hair loss with drugs, diet, excess vit A, fever, stress, hormones
Hair Color

- Result of melanin produced in melanocytes in hair bulb
- Dark hair contains melanin (eumelanin)
- Blond and red hair contain melanin with iron and sulfur added (pheomelanin)
- Graying hair is result of decline in melanin production
- White hair has air bubbles in the medulla (middle) of shaft
CUTANEOUS GLANDS

Specialized exocrine glands found in dermis

- Sebaceous glands: oil
- Sudoriferous glands: sweat
 - Apocrine
 - Eccrine (merocrine)
- Ceruminous glands: wax
- Mammary glands: milk
GLANDS

Sebaceous Glands - Oil

- Holocrine glands
- Located in dermis
- Most open onto hair follicles
- Sebum
 + Triglycerides, cholesterol, proteins, electrolytes
 + keeps hair and skin from soft & pliable
 + inhibits growth of bacteria & fungi (ringworm)
- Acne
 + bacterial inflammation of glands
 + secretions stimulated by hormones at puberty
GLANDS

Sudoriferous Glands - Sweat

- Eccrine (sweat) glands
 + most areas of skin
 + secretory portion in dermis with duct to surface
 + regulate body temperature with perspiration

- Apocrine (sweat) glands
 + armpit and pubic region
 + secretory portion in dermis with duct that opens onto hair follicle
 + secretions more viscous
Modified Sudoriferous Glands

- Ceruminous Glands
 - Waxy secretion in ear canal
 - Cerumen contains secretions of oil and wax glands
 - Helps form barrier for entrance of foreign bodies
 - Impacted cerumen may reduce hearing

- Mammary glands
 - Secrete milk
NAILS

- Tightly packed keratinized cells
 + Derivatives from stratum corneum
- Functions
 + Grasping and manipulating
 + Protections against trauma
- Structures
 + Nail body (nail plate)
 + Free edge
 + Nail fold
 + Nail bed
 + Eponychium
 + Nail root
WOUND HEALING

- Bleeding
- Scab formation and macrophage activity
- Granulation tissue
- Epithelial regeneration and dermal fibrosis

See chpt 5 fig 5.34
Burns
Cancer
Pressure sores
Age related changes

HOMEOSTASIS
Burn: tissue damage from excessive heat, electricity, radioactivity, or corrosive chemicals that destroys (denatures) proteins in the exposed cells

- Fluid replacement, infection control, electrolyte balance
- Methods for determining the extent of a burn
 - Rule of nines
 - Lund-Browder
- Classification of burns
 - first-degree: partial-thickness
 - second-degree: partial-thickness
 - third-degree: full-thickness
When a burn area exceeds 70%, over half of the victims die.
Most tumors that arise in the skin are benign and do not metastasize.

Skin cancer can be caused by excessive exposure to sunlight.

Forms:
- basal cell carcinoma
- squamous cell carcinoma
- malignant melanoma

Among the risk factors for skin cancer are skin type, sun exposure, family history, age, and immunologic status.
<table>
<thead>
<tr>
<th>Normal Mole</th>
<th>Melanoma</th>
<th>Sign</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Asymmetry</td>
<td>when half of the mole does not match the other half</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Border</td>
<td>when the border (edges) of the mole are ragged or irregular</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
<td>when the color of the mole varies throughout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diameter</td>
<td>if the mole’s diameter is larger than a pencil’s eraser</td>
</tr>
</tbody>
</table>

Photographs Used By Permission: National Cancer Institute
PRESSURE SORES

- Decubitus ulcers
- Caused by constant deficiency of blood flow to tissue
- Areas affected is skin over bony prominence in bedridden patients
- Preventable with proper care
- Epidemis thins as basal cells slow
 - More prone to injury and infection
- Number of langerhans cells decrease
 - More prone to skin damage and infection
- Vitamin D\textsubscript{3} production declines
 - Muscle weakness, decreased bone strength and density
- Melanocyte activity decreases
 - More sensitive to sunburn and UV damage
- Glandular activity declines
 + Skin becomes dry and scaly
 + Higher risk of overheating
- Blood supply reduced
 + Lessens ability to decrease body temperature
- Hair follicles stop functioning
- Dermis thins and elastic network decreases
 + Sagging wrinkling skin
- Repair slows – higher risk of infection

AGE RELATED CHANGES